首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   19篇
  国内免费   41篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   12篇
  2016年   4篇
  2015年   7篇
  2014年   8篇
  2013年   13篇
  2012年   9篇
  2011年   14篇
  2010年   10篇
  2009年   17篇
  2008年   18篇
  2007年   27篇
  2006年   26篇
  2005年   18篇
  2004年   20篇
  2003年   13篇
  2002年   11篇
  2001年   18篇
  2000年   11篇
  1999年   19篇
  1998年   9篇
  1997年   15篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   11篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有405条查询结果,搜索用时 16 毫秒
1.
The differences betweenFestuca vivipara (tetraploid) andF. ovina subsp.supina (diploid), two often confused taxa, are demonstrated in regard to morphology, leaf anatomy, ecology and distribution. New maps illustrate the distribution ofF. vivipara in the Alps and the Northern Hemisphere. The development of different polyploidy levels withinF. vivipara as a consequence of occasional sexual processes is discussed. (English Summary on p. 39.)
  相似文献   
2.
丝裂原活化蛋白激酶(M APK)是生物体内信号转导的重要组分,与生长、发育和逆境胁迫反应密切相关.为了研究草坪草对非生物逆境胁迫反应的分子机理,利用同源基因克隆法从4℃低温诱导的草坪草高羊茅(F estu-ca arund inacea Schreb.)幼苗cDNA文库中分离得到一个M APK的cDNA即F aMAPK 1,F aMAPK 1编码369个氨基酸残基的蛋白激酶,该蛋白激酶具有TEY的磷酸化基序.据推测的氨基酸序列的BLA ST同源性分析表明,F aM APK 1蛋白与水稻O sM APK 4蛋白的一致性为91.1%.N orthern杂交检测F aMAPK 1基因对逆境胁迫反应的结果表明冷(4℃)处理对根中F aMAPK 1基因的表达没有明显影响,但诱导叶中F aMAPK 1上调表达.而且低温(4℃)、高盐(250 mm o l/L N aC l)、干旱和100μm o l/L ABA都诱导叶中F aMAPK 1上调表达,表明F aM APK 1蛋白可能在高羊茅对非生物逆境胁迫的反应中起重要作用.  相似文献   
3.
湖北野生天麻的遗传分化及栽培天麻种质评价   总被引:8,自引:0,他引:8  
采用7条ISSR引物对天麻(Gastrodiaelata)8个自然居群和6个人工栽培居群共483个样本的居群遗传多样性进行了初步检测,共检测出清晰、重复性好的DNA带77条,其中64条为多态性带,总多态位点百分比PPB=83.12%。遗传多样性分析结果表明:天麻自然居群的遗传多样性参数分别为:多态位点百分比PPB=59.09%,有效等位基因数Ae=1.29,Nei’s遗传多样度H=0.176,Shannon’s多态信息指数I=0.270,明显高于人工栽培居群(PPB=35.71%,Ae=1.16,H=0.100,I=0.155),揭示出栽培居群存在明显的遗传基础狭窄和遗传均质性问题。UPGMA聚类分析表明,自然居群与栽培居群存在明显的分化而分别聚为两大类群。自然居群间基因分化系数GST=0.2558,与AMOVA分析所揭示的居群间遗传变异量占总变异的27.25%的结果相近,说明天麻自然居群间亦存在一定程度的遗传分化;居群间基因流(Nm)为1.4547,相对较弱,可能对自然居群的遗传分化有一定影响。自然居群聚类结果显示出一定程度的地理区域聚类趋势,但Mantel检验表明自然居群间遗传距离与地理距离并不存在显著相关(r=0.1669,P=0.2110),揭示出天麻自然居群的分化现状可能是其生活史特性、地理隔离与人为破坏综合作用的结果。栽培居群的遗传均质化趋势,揭示了引种驯化的瓶颈效应和长期无性繁育所导致的遗传多样性丧失,也反映出栽培天麻种质的遗传基础狭窄。而栽培居群与自然居群间存在着明显的遗传分化,反映天麻栽培居群与自然居群间可能存在基因流的阻断。  相似文献   
4.
The Iberian mountain spiny fescues are a reticulate group of five diploid grass taxa consisting of three parental species and two putative hybrids: F. × souliei (F. eskia × F. quadriflora) and F. × picoeuropeana (F. eskia × F. gautieri). Phenotypic and molecular studies were conducted with the aim of determining the taxonomic boundaries and genetic relationships of the five taxa and disentangling the origins of the two hybrids. Statistical analyses of 31 selected phenotypic traits were conducted on individuals from 159 populations and on nine type specimens. Molecular analyses of random amplified polymorphic DNA (RAPD) markers were performed on 29 populations. The phenotypic analyses detected significant differences between the five taxa and demonstrated the overall intermediacy of the F. × picoeuropeana and F. × souliei between their respective parents. The RAPD analysis corroborated the genetic differentiation of F. eskia, F. gautieri and F. quadriflora and the intermediate nature of the two hybrids; however, they also detected genetic variation within F. × picoeuropeana. These results suggest distinct origins for F. × picoeuropeana in the Cantabrian and Pyrenean mountains, with the sporadic Pyrenean populations having potentially resulted from recent hybridizations and the stabilized Cantabrian ones from older events followed by potential displacements of the parents. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 676–706.  相似文献   
5.
6.
ABSTRACT

Festuca gamisansii subsp. aethaliae, endemic to the Isle of Elba (Tuscan Archipelago) is described. The morphological, anatomical, karyological, ecological and chorological characteristics of the species are given. The main characteristics distinguishing F. gamisansii subsp. aethaliae from F. gamisansii subsp. gamisansii occurring in Corsica are also summarized.  相似文献   
7.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   
8.
Herbivory is one of the key drivers shaping plant community dynamics. Herbivores can strongly influence plant productivity directly through defoliation and the return of nutrients in the form of dung and urine, but also indirectly by reducing the abundance of neighbouring plants and inducing changes in soil processes. However, the relative importance of these processes is poorly understood. We, therefore, established a common garden experiment to study plant responses to defoliation, dung addition, moss cover, and the soil legacy of reindeer grazing. We used an arctic tundra grazed by reindeer as our study system, and Festuca ovina, a common grazing‐tolerant grass species as the model species. The soil legacy of reindeer grazing had the strongest effect on plants, and resulted in higher growth in soils originating from previously heavily‐grazed sites. Defoliation also had a strong effect and reduced shoot and root growth and nutrient uptake. Plants did not fully compensate for the tissue lost due to defoliation, even when nutrient availability was high. In contrast, defoliation enhanced plant nitrogen concentrations. Dung addition increased plant production, nitrogen concentrations and nutrient uptake, although the effect was fairly small. Mosses also had a positive effect on aboveground plant production as long as the plants were not defoliated. The presence of a thick moss layer reduced plant growth following defoliation. This study demonstrates that grasses, even though they suffer from defoliation, can tolerate high densities of herbivores when all aspects of herbivores on ecosystems are taken into account. Our results further show that the positive effect of herbivores on plant growth via changes in soil properties is essential for plants to cope with a high grazing pressure. The strong effect of the soil legacy of reindeer grazing reveals that herbivores can have long‐lasting effects on plant productivity and ecosystem functioning after grazing has ceased.  相似文献   
9.
Tissue culture techniques, medium composition, pH value and targeted tissues, agroinfection and co-culture conditions, selection process were optimized for efficient turfgrass transformation. A highly regenerable callus lines were produced in callus induction medium modified from N6 basal medium. Six-week-old calluses were cultured on Pre-regeneration medium I for 4 days and then subjected to Agrobacterium tumefaciens. After co-cultivation at 20±1 °C in a 16 h light/8 h darkness for 3 days, the calluses were cultured on non-selective Pre-regeneration medium II supplemented with 400 mg l−1 l-cysteine for 7 days. Plantlets were regenerated on the Regeneration medium without selection pressure. A selection pressure was given to the regenerated plantlets when they were rooted on the Plantlet rooting medium. Roots appeared within 8–12 days in putative transformed plantlets. Resistant plants obtained were phenotypically normal and fully fertile. Chemical and molecular analyses confirmed that foreign genes were successfully introduced into the genome of perennial ryegrass or tall fescue. The transformation efficiency can attain 23.3% in perennial ryegrass.  相似文献   
10.
Twelve microsatellite markers were isolated from Lolium multiflorum. Allelic variability and cross‐species amplification were assessed on 16 individuals of each of the three grassland species L. multiflorum, Lolium perenne and Festuca pratensis. Cross‐species amplification success was 100% for L. perenne and 83% for F. pratensis. The number of alleles detected ranged from one to 14 with an average of 3.4. While three microsatellite loci were polymorphic in all three species, one marker produced species‐specific alleles in all three species. These microsatellite markers provide a valuable tool for population genetic studies within and among species of the Festuca–Lolium complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号